ADMINISTRATION BUILDING

Justin Purcell Structural Option Advisor: Dr. Hanagan

PRESENTATION OUTLINE

- Building Background
- Existing Structural System
- Proposal
- o Proposed Structural System
- Cost and Schedule Analysis
- Electrical Redesign
- Conclusions
- Questions and Comments

PROJECT BACKGROUND

BUILDING INFORMATION

- Owner: Confidential Client
- Location: Pennsylvania
- Building Type: Office and Specialty Amenity Spaces
- Size: 311,905 S.F.
- Stories: 5/4 Above Grade
- F-F Height: 20' For Ground Floor, 13.33' For Floors 1-5
- Building Height: 87'
- Construction Dates: 10/22/01-7/24/03

KEY PLAYERS

Architect: KlingStubbins

SKANSKA CM: Skanska

Engineer: KlingStubbins

EXISTING STRUCTURAL SYSTEM

GRAVITY SYSTEM

- 3 ¼ " Lightweight Concrete Slab,
 4,000 PSI Concrete Strength
- 3" Composite Metal Deck
- W18x35 Composite Beams-40'
- W18x35 Composite Girders-20'
- W12x96 Columns-13.33'

1	W14x22 (28	8)	W14x22 (28)		W14x22 (28)	
W16x26 (24) c=1-1/2"	W18x35 (38) c=1-1/2"	W18x35 (38) c=1-1/2"	W18x35 (38) c=1-1/2"	W18x35 (38) c=1-1/2"	W18×35 (38) c=1-1/2"	VV16x26 (24) c=1-1/2"
-	W 18-35 (1)	2)	W/18-35 (32)		W/18-35/32	
W16x26 (24) c=1-1/2"	W18x35 (38) c=1-1/2"	W18x35 (38) c=1-1/2"	W18X35 (38) c=1-1/2"	W18x35 (38) c=1-1/2"	W18x35 (38) c=1-1/2"	W16x26 (24) c=1-1/2"
W8×10 (10) c=3/4"	W 16x26 (10 = 36= (02) 21x04,000 W 12x14 (14	(b) W10x12 (20) c=3/4"	W16x26 (36) 	W10x12 (20) c=3/4"	W16x26 (36)	W8×10 (10) c=3/4"

GRAVITY DESIGN LOADS

LIVE LOAD					
FLOOR:	100 PSF				
ROOF:	150 PSF				

FLOOR DEAD LOAD					
CONCRETE SLAB:	35 PSF				
SUPERIMPOSED:	30 PSF				
STEEL STRUCTURE	15 PSF				
EXTERIOR BRICK TRUSS PANEL	40 PSF				

TYPICAL FLOOR

LATERAL SYSTEM

- Braced Frames (Frames in Red)
- HSS $8x6x^{1/2}$ Braces
- Coordinated With Mechanical Distribution

PROPOSAL

GOALS

Change Existing Structural System To A One-Way Slab,

CIP Concrete System

Estimate Cost Of Existing And Proposed Structural
 System

• Estimate Schedule Of Both Systems

 Redesign Electrical System To Limit The Number Of Transformers

STRUCTURAL REDESIGN

DESIGN PROCEDURE

- ASCE 7-05
- ACI 318-02
- CRSI 2002 Design Manual
- E-TABS
- Unit Strip Method
- PCA Slab And Column
- Hand Calculations

STRUCTURAL OVERVIEW

- 6" Normal Weight Concrete Slab-CIP
- 16" x 28" CIP Beams
- 20" x 26" CIP Girders
- 20" x 30" CIP Columns
- Moment Frames
- Design Floor And Roof Loads:

DESIGN LIVE LOAD					
FLOOR LOAD:	100 PSF				
ROOF LOAD:	150 PSF				

DESIGN DEAD LOAD				
CONCRETE SLAB:	88 PSF			
SUPERIMPOSED:	30 PSF			

TYPICAL FLOOR

SLAB DESIGN

- 4000 PSI Concrete, 60 KSI Steel Reinforcing
- Minimum 5" Thick Concrete Slab Based On ACI
- 6" Thick Concrete Slab Was Used
- Pattern Loading Considered To Find Critical Moments
- Steel Reinforcing
 - Bottom: #3's @ 8'' O/C (Positive)
 - Top: #4's @ 12" O/C (Negative)
 - T-S: #4's @ 15'' O/C

COLUMN DESIGN

- Designed For 1300 Kips and 750 K-FT
- Gravity and Lateral Loads
- Slenderness Considered Based On ACI For Lateral Loads
- 4000 PSI Concrete
- # 3 Ties

COLUMN DESIGN

- 20" x 30" CIP Column
- 32 #10 Bars
- Oriented So That The 30" Depth Handles The Larger

Wind Force In The Long Direction

BEAM DESIGN

- Moment and Shear Coefficient Analysis
- 16" x 28" Beam
- Steel Reinforcing
 - Bottom: 2 #11's
 - Top: 2 #11's
 - Stirrups: #5's
- L/370 Deflection Ratio

GIRDER DESIGN

- Moment and Shear Coefficient Analysis
- 20" x 26" Girder
- Steel Reinforcing
 - Bottom Bars: 3 #11's
 - Top Bars: 4 #14's
 - #5 Stirrups
- L/706 Deflection Ratio

MOMENT FRAMES

- Designed To Resist Lateral Loads In Both Directions
- Achieved From CIP Monolithic Pour At Every Connection
- For Simplicity Of Lateral System And Ease Of Construction, Every Column And Beam Connection Is A Moment Connection
- Forces Distributed By Relative Stiffness
- o 32 Moment Frames
 - 6 In The Short Direction
 - 26 In The Long Direction

LATERAL DRIFT

- Combination Of Shear Deflection And Bending Deflection
- Controlled By Wind
- Drift Found To Be Less
 Than 1" In Both Directions
 - 0.2" In Long Direction
 - 0.15" In Short Direction

ADVANTAGES OVER EXISTING STRUCTURAL SYSTEM

Floor Depth Savings: 5"

Beam Deflection Savings: 0.7"

• Girder Deflection Savings: 0.4"

• # Of Column Savings: 76

• Drift Savings: 0.37"

COST AND SCHEDULING

EXISTING STRUCTURAL SYSTEM

- Cost Estimate #1: \$8.62 Million
 - Estimate Based On G.C.'s Suggestions And Feedback
- Cost Estimate #2: \$7.71 Million
 - Estimate Based On R.S. Means 2008
 - Detailed Estimate Based On Takeoff Per L.F. Of Steel
- Cost Estimate #3: \$8.67 Million
 - Estimate Based On R.S. Means 2008
 - Generic Steel Estimate Based On A 3-6 Story Steel Building

EXISTING STRUCTURAL SYSTEM

Schedule For Estimate #1: N/A

Schedule For Estimate #2: 5 Months

Schedule For Estimate #3: 5 Months

PROPOSED STRUCTURAL SYSTEM

- Cost Estimate #1: \$13.46 Million
 - Based On R.S. Means 2008
 - Detailed Estimate Based On Takeoff
- Cost Estimate #2: \$12.44 Million
 - Based On R.S. Means 2008
 - Generic Estimate Based On CIP One-Way Slab
 W/Beams and Columns

PROPOSED STRUCTURAL SYSTEM

Schedule For Estimate #1: 15 Months
 Schedule For Estimate #2: 15 Months

ELECTRICAL DESIGN

PROBLEM STATEMENT

• There Is An Excessive Amount Of

Transformers

Currently There Are 50 Transformers
 GOALS:

- Reduce Number Of Transformers
- Resize The Feeders

PROBLEM STATEMENT

PROBLEM STATEMENT

SOLUTION EXAMPLE

SOLUTION EXAMPLE

• LEFT SIDE:

- Transformer Savings: 5
- Connected Load: 53 KVA-Telecommunications
- Replaced With 75 KVA Eaton 480V-208/120V
- Replaced Feeder With 2 Sets Of 4 KcMil Wire

SOLUTION EXAMPLE

• RIGHT SIDE:

- Transformer Savings: 3
- Connected Load: 35 KVA-Telecommunications
- Replaced With 45 KVA Eaton 480V-208/120V
- Replaced Feeder With 2 Sets Of 4 KcMil Wire

REDESIGN OVERVIEW

- Transformers Before: 50
- Transformers After: 11
- Savings: 39
- Utilized Eaton 480V-208/120V
 - Transformers

RECOMMENDATION AND CONCLUSIONS

RECOMMENDATION

Keep Structural System As Steel
 Composite System With Braced Frames
 For The Following Reasons:

Cost

Erection Time

CONCLUSIONS

 Initial Cost Analysis Was Proven Wrong
 Recommend Keeping Existing Structural System

Able To Reduce The Number Of

Electrical Transformers

ACKNOWLEDGEMENTS

- KlingStubbins, Especially Bill Gillespie
- In Dr. Hanagan, Professor Parfitt And The Rest Of
 - The AE Department
- Ben Kovach At Balfour Beatty
- Pennsylvania State University
- Fellow AE's
- My Family And Friends

QUESTIONS AND COMMENTS

